LHC Searches with b-jets Versus Rare B-decays in SUSY GUTs

J. Sayre

Homer L. Dodge Department of Physics
University of Oklahoma

Based on work with C. Kao

Supersymmetric Higgs

Higgs content of the Standard Model is minimal: one SU(2) doublet charged under U(1).

More complicated models can be easily constructed.

Natural extension: two doublets (2HDM).

Often constructed with one "up-type" and one "down-type" to avoid FCNCs.

$$\phi_u = (\mathbf{2}, \frac{1}{2}), \qquad \phi_d = (\mathbf{2}, -\frac{1}{2})$$

$$\mathcal{L} = Y_u Q \phi_u u^c + Y_d Q \phi_d d^c + Y_e L \phi_d e^c$$

Supersymmetry requires 2 doublets in minimal model (MSSM). → Important signal at LHC.

The 2HDM

Both doublets acquire vevs to break $SU(2) \times U(1)$:

$$\langle \phi_u \rangle = \begin{pmatrix} 0 \\ \mathbf{v_2} \end{pmatrix}, \quad \langle \phi_d \rangle = \begin{pmatrix} \mathbf{v_1} \\ 0 \end{pmatrix}.$$

This leaves five fields: h^o, H^o, A^o, H^{\pm} .

- h^0, H^0 : "standard model" and heavy neutral scalars.
- $m{P}$ A^0 : neutral pseudoscalar

Two free parameters: m_A and $\tan \beta \equiv \frac{v_2}{v_1}$.

Phenomenology

For $m_A \gtrsim 125$ GeV, $m_A \simeq m_H \to A$ and H^0 are indistinguishable at LHC.

If $m_A \lesssim 125$ GeV, h^0 and A become indistinguishable. $d\overline{d}A^0 \propto \frac{gm_d \tan \beta}{2m_W}$ (similar for H^0 at high m_A .)

At high $\tan \beta$, couplings of A, H^0 to b quark and τ become large.

- For $\tan \beta < 5$, $gg \to \phi$ is leading source of inclusive Higgs production.
- For $\tan \beta > 7$, $b\overline{b} \to \phi$ becomes dominant.
- At large $\tan \beta$, the branching fraction $B(H^0, A \to b\overline{b}) \simeq 0.89$.

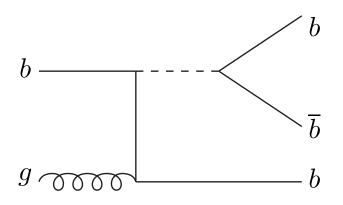
Higgs in Association with b-Quarks

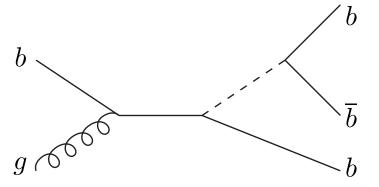
Generally, ϕ decays to two b-quarks at high p_T .

We work in a 5-flavor scheme. Use b-quark distribution functions to sum over large logarithms arising from collinear, low p_T quarks.

- For inclusive Higgs production, LO is $b\overline{b} \to \phi \to b\overline{b}$. Unfortunately swamped by QCD background.
- For two associated high- p_T b's, LO is $gg, q\overline{q} \to b\overline{b}\phi \to bb\overline{b}b$. Takes advantage of b-tagging but greatly reduced signal. (Dai, Gunion & Vega, '94 & '96; Richter-Was and Froidevaux, '97; Balazs, Diaz-Cruz, He, Tait & Yuan, 99)
- We choose an intermediate approach: LO is $bg \to b\phi \to bb\bar{b}$. Appropriate for 3 b-tagged jets at high p_T . (Campbell, Ellis, Maltoni & Willenbrock, '03; Huang and Zhu, '99)

Signal


We generate a 3 b-quark signal using the above processes in a Monte Carlo program using amplitudes calculated by MadGraph.


We choose $\mu_F=\mu_R=m_H/4$ to minimize NLO corrections. (Maltoni, Sullivan & Willenbrock, 2003)

Program allows for potentially complicated cuts. In general we impose the following:

- ullet Minimum p_T cuts on $1^{st}, 2^{nd}, 3^{rd}$ jets ordered by p_T .
- Three jets also required to pass maximum η .
- Three jets required to be well separated, $\Delta R > \Delta R_{min}$.
- At least one pair of jets satisfies $|M_{bb}-M_H|<\Delta M$.
- ullet Veto events with missing E_T above some threshold.
- May impose cuts on $\Delta \phi$ angle between jets.

Feynman Graphs

NWA is generally good.

At high m_A and high $\tan \beta$:

$$\frac{m_A}{\Gamma_A} \sim 4\%$$

$$|\sigma_{NWA} - \sigma_{BWR}| \sim 10\%$$

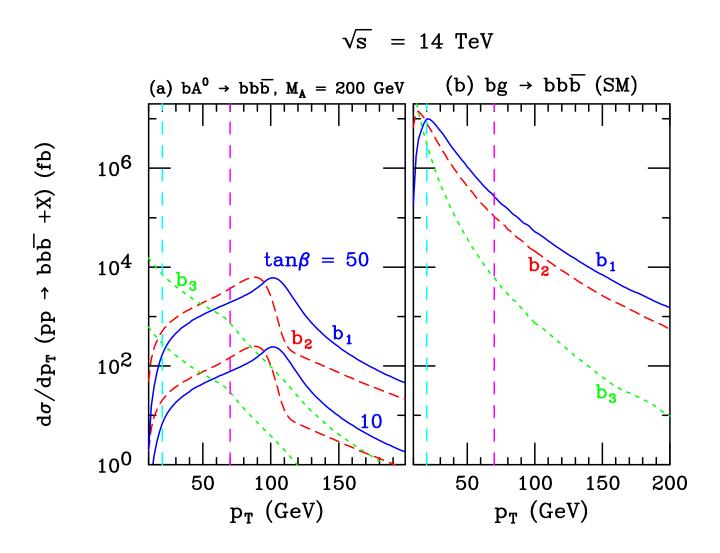
For completeness we do all computations in a full Breit-Wigner treatment.

LHC Searches with b-jets Versus Rare B-decays in SUSY GUTs - p.7/24

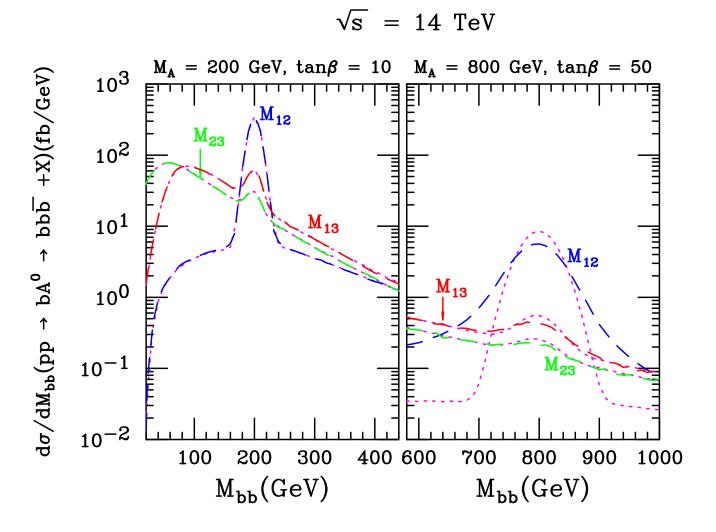
Backgrounds

We consider backgrounds from the following processes: Irreducible

•
$$bg \rightarrow bb\overline{b}$$
 (QCD)


One or more mis-tagged particles

- lacksquare $cg o cb\overline{b}$
- $lacksquare gg, qq o gb\overline{b}$
- lacksquare $qg o qb\overline{b}$
- $ightharpoonup pp o tt o be^-
 u \overline{b} d\overline{u} ext{ (or } c\overline{s})$
- $pp \to tt \to bu\overline{db}d\overline{u}$


The latter are subjected to additional cuts:

- 4-jet veto for jets above some p_{Tmin} and within $|\eta_{max}|$.
- Veto events with charged leptons above p_T threshold.

P_T Distributions

Mass Distributions

Cuts

We assume the b-tag efficiency $b_{eff} = 0.6$ for running at the LHC. We take the mistag rates as $c_{mis} = 0.1$; $u, d, s, g_{mis} = 0.01$.

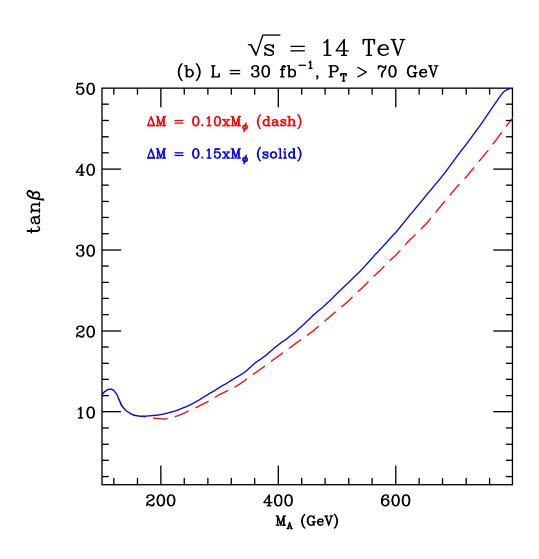
We impose the following cuts:

- $\eta < 2.5$
- ightharpoonup Leading 3 jets pass $p_T > 70~{
 m GeV}$ (CMS TDR 2007; ATLAS TDR 1999,2003)
- $\Delta R > 0.7$ for 3 accepted jets.
- At least one $b\overline{b}$ pair has invariant mass $|M_{bb}-M_A|<\Delta M$. $\Delta M=0.15$.
- \bullet $E_{miss}^T < 40 GeV$
- ▶ Veto more than 3 jets with $\eta < 2.5$ and $p_T > 15$ GeV.
- No cuts on ϕ or E_{lepton} .

Comparison of Cross Sections

Signal	bbb	cbb	bbg	qbb
3.11×10^4	2.05×10^{8}	5.18×10^8	2.48×10^{10}	5.5×10^9
6.72×10^3	4.43×10^{7}	2.79×10^7	8.95×10^7	1.99×10^7
2.41×10^3	1.503×10^5	6.53×10^4	1.59×10^5	3.44×10^4
2.44×10^2	4.48×10^{3}	1.86×10^{3}	4.04×10^{3}	1.301×10^3

Minimal cuts, no tagging.


With tagging efficiencies.

Applying low cuts: $p_T > 20, 30, 50$ GeV.

Applying Level-1 (CMS) Trigger threshold: $p_T > 70$ GeV.

 $pp \to t \bar t$ backgrounds are negligible after cuts.

MSSM Detection ($30fb^{-1}$)

Unified Models

We wish to work in a supersymmetric framework, but general soft SUSY-breaking terms introduce many free parameters.

$$M_i^2 |\phi_i|^2, M_a \lambda_a \lambda_a, A_{ijk} \phi_i \phi_j \phi_k, B\mu HH$$

Various unified frameworks allow us to constrain our models to a few important parameters.

Parameters depend on messenger responsible for SUSY breaking, unification assumptions.

Two Minimal Models

mSUGRA

- Gravity acts as messenger between hidden sector and SM sector.
- Require unification at GUT scale, run RGEs to find low energy particle spectrum.
- ullet Minimal set of parameters chosen as: $M_0, M_{\frac{1}{2}}, an eta, A_0, sgn(\mu)$.

mAMSB

- Tree-level supergravity terms can be suppressed in higher-dimensional models. SUSY breaking terms induced by super-conformal anomaly may become dominant.
- lacksquare 1st and 2nd generation soft terms proportional to gauge group beta functions \rightarrow no SUSY flavor problem.
- In generic AMSB, negative scalar squared masses are generated. mAMSB adds a universal M_0^2 to generate a minimal acceptable phenomenology.
- Parameterized by: $M_0, M_{\frac{3}{2}}, \tan \beta, sgn(\mu)$.

Constraints

Higgs production in association with b's becomes important at high $\tan \beta$. However, large $\tan \beta$ may induce large BSM effects in experimentally constrained phenomena.

$$B_s \to \mu^+ \mu^-$$

SM predicts $BF(B_s \to \mu^+ \mu^-) = 3.6 \times 10^{-9}$. [A.J. Buras (2009)] Current Experimental Limits

- **D0**: $< 5.1 \times 10^{-8}$
- CDF: $< 4. \times 10^{-8} \star$
- CMS: $< 1.9 \times 10^{-8}$
- LHCb: $< 1.5 \times 10^{-8}$
- \star -CDF reports a weak signal corresponding to $BF=1.8\times 10^{-8}$. LHCb was estimated to reach the SM limit with $\sim 2 {
 m fb}^{-1}$ at 14 TeV. [LHCb Collaboration (2009)] Extrapolated to $BF=7.\times 10^{-9}$ with $1 {
 m fb}^{-1}$ at 7 TeV. [Serra (2009]

Penguin diagrams involving neutral Higgs scale as the transfer of the sus Rare B-decays in SUSY GUTS - p.16/2

Measured Constraints

SUSY/Unification scenarios generally can induce Flavor-Changing effects.

 $b \rightarrow s \gamma$ acts as a sensitive probe of new physics.

Experimentally measured:

$${\sf BR}(B \to X_s \gamma) = (3.55 \pm 0.26) \times 10^{-4} \ {\sf [PDG (2010)]}$$

Theory (SM):

BR
$$(b \to s \gamma) = (2.98 \pm 0.26) \times 10^{-4}$$
 [Becher & Neubert, 2007] $= (3.15 \pm 0.23) \times 10^{-4}$ [Misiak et al., 2007]

mSUGRA favors smaller values relative to SM.

mAMSB can show enhancement.

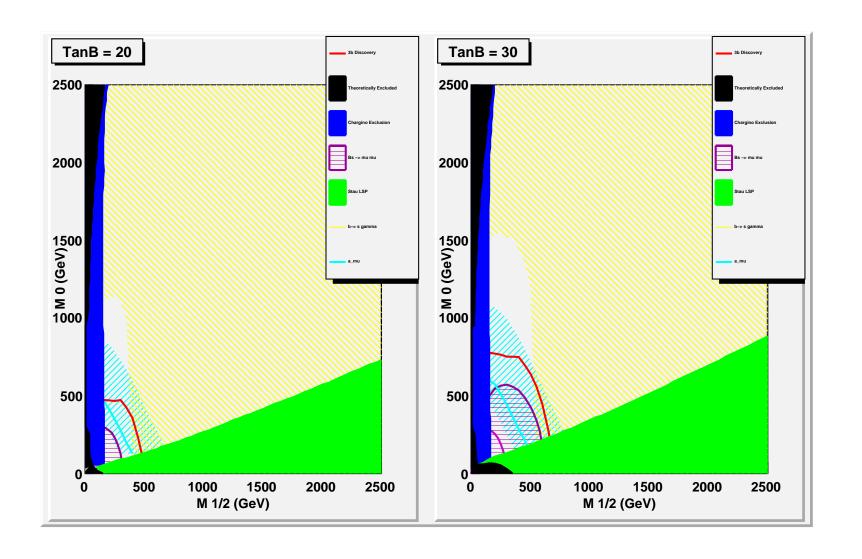
Δa_{μ}

Anomalous muon magnetic moment g-2 acts as a precision EW probe of new physics.

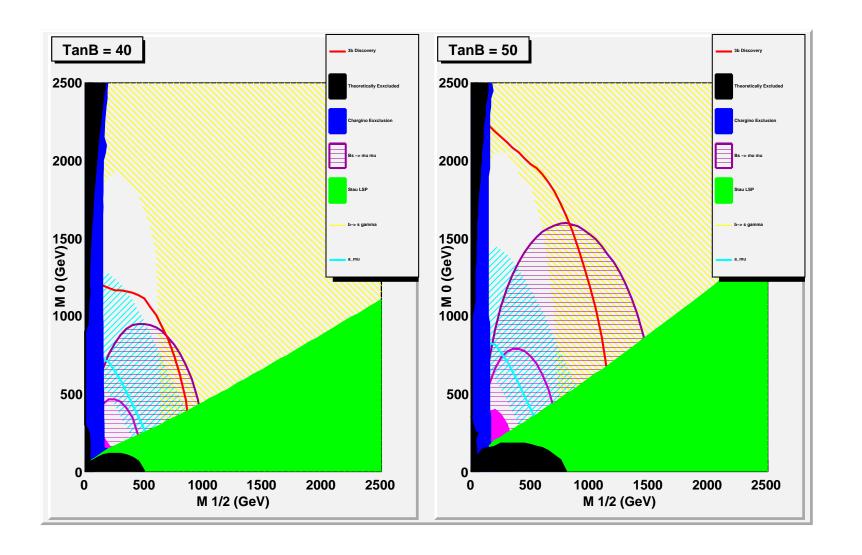
Experiment:
$$a_{\mu} \equiv (g-2)/2 = (11659208.9 \pm 6.3) \times 10^{-10} [\text{PDG 2010}]$$

Theory (SM): $a_{\mu}=(11659183.0\pm5.1)\times10^{-10}$ [Teubner, Hagiwara, Liao, Martin & Nomura (2011)]

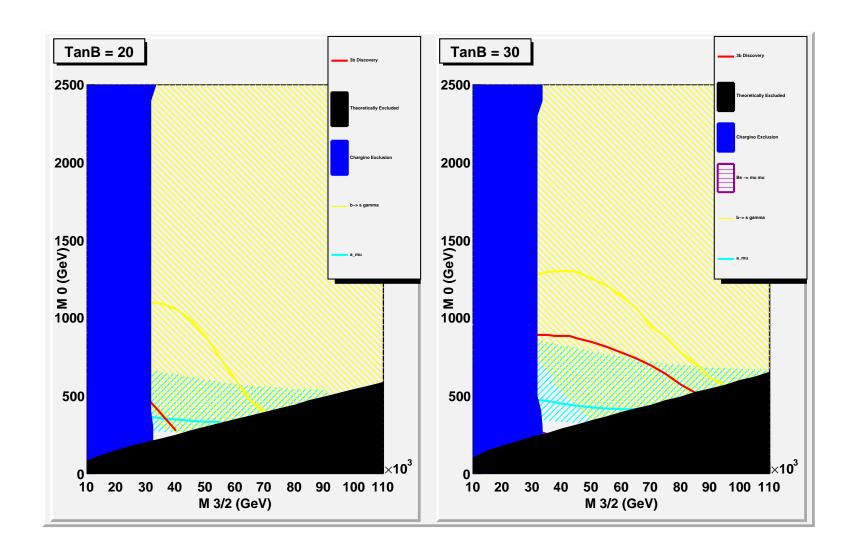
$$\Delta a_{\mu} = (25.9 \pm 8.1) \times 10^{-10}$$

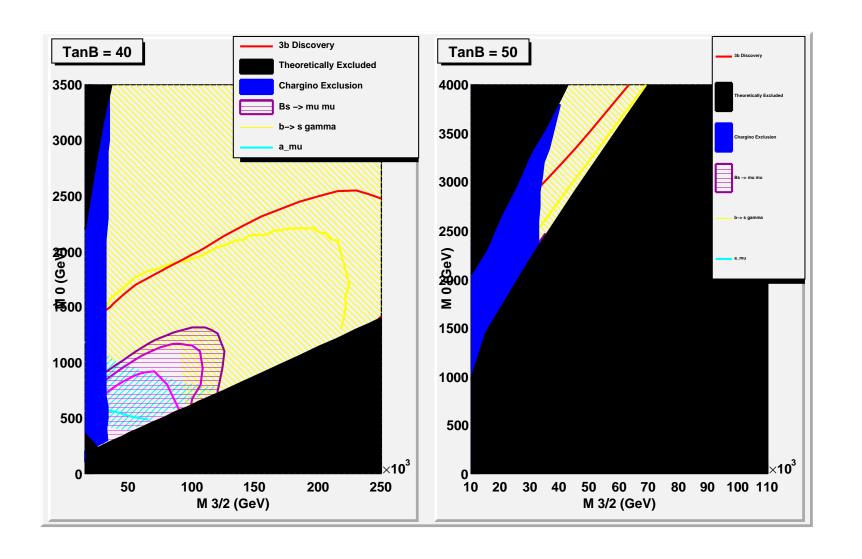

 3.2σ discrepancy. Possible sign of new physics?

Sufficiently light SUSY contributions can account for observed a_{μ} .


Computation Strategy

- We use ISAJET [Baer, Paige, Protopopescu & Tata] to calculate Higgs masses and decay widths as a function of unification parameters.
- Results are passed to MadGraph based Monte Carlo code for signal simulation.
- Backgrounds simulated with MadGraph for a range of mass windows; spline interpolated. We assume a K-factor of 2.
- ISATOOLS extension used to estimate $B_s \to \mu\mu$, $b \to s\gamma$, Δa_{μ} .
- We choose $sgn(\mu) > 0$ and $A_0 = 0$ for the results presented here.


mSUGRA (mid $\tan \beta$)


mSUGRA (high $tan\beta$)

mAMSB (mid $tan\beta$)

mAMSB (high $tan\beta$)

Conclusions

- The 3-b channel is a promising window for discovering neutral MSSM Higgs bosons in the case of high $\tan \beta$.
- QCD backgrounds are large but can be overcome with selective cuts and tight b-tagging.
- Significant parameter space covered in mSUGRA and mAMSB scenarios. Any excess for $B_s \to \mu\mu$ above SM likely corresponds to discoverable A^0, H^0 .
- In mSUGRA, tension between $b \to s\gamma$ and Δa_{μ} leaves small windows if SUSY is to account for observed values.
- mAMSB better resolves $b \to s \gamma$ vs. Δa_{μ} . For $\tan \beta \gtrsim 40$, $B_s \to \mu \mu$ exclusion conflicts with Δa_{μ} . Theoretically disallowed regions become large for very high $\tan \beta$.
- Additional models to be considered: GMSB, mixed models, non-minimal models. Related channels $b\tau^+\tau^-$ and $b\mu^+\mu^-$, (Kao, Dicus, Malhotra & Wang, '08)